Telegram Group & Telegram Channel
Adaptive Agent (AdA) [2023] - текущий флагман Meta-RL

Сегодня расскажу вам о работе от Deepmind, применяющий описанную выше логику в современном масштабе.

1) В качестве задачи используется Xland 2.0 - это семейство из 10^40 задач. Это случайно генерируемые 3D-"площадки" со каким-то набором объектов, которые можно перемещать по площадке. Агент - это "существо" на площадке с видом от первого лица, которое может физически с объектами взаимодействовать. Объекты так же могут взаимодействовать в другими объектами согласно каким-то правилам (например, объект №1 и №4 при касании друг с другом исчезают / превращаются в объект №5). Агенту назначается награда за какое-то событие в этой среде (например, агент держит в руках объект №2).
2) В качестве модели используется полумиллиардный трансформер, который принимает на вход последние N событий из своей истории - вид от первого лица, награды и другую информацию. Как я уже говорил в прошлом посте, в постановке мета-обучения границы между эпизодами в одной задаче стёрты. Обучение занимает десятки миллиардов шагов.
3) Одним из ключей к успеху является Auto-curriculum learning. Мы регулярно сэмплируем пачку новых задач для обучения, но не учимся на всех подряд. Мы выбираем те задачи, которые для нас оптимальные по сложности - не слишком простые и не слишком сложные.

В результате у системы получается значительно обходить человека на Xland-задачах. При этом на графиках видно, что система умеет именно адаптироваться к новым задачам - производительность значительно растёт с каждой попыткой, и где-то на 10 попытке доходит до плато.

На мой взгляд, это очень интересное направление исследований. Однако, стоит заметить, что эти Xland-задачи не требуют интеллектуального поведения агентов, а ресурсов для обучения уже требуется столько, сколько в принципе сейчас способно на такое выделить человечество. Так что дальнейшее масштабирование втупую вряд ли даст нам огромное плоды. Будет очень интересно следить за дальнейшим развитием.

Видеообзор на полчаса.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/78
Create:
Last Update:

Adaptive Agent (AdA) [2023] - текущий флагман Meta-RL

Сегодня расскажу вам о работе от Deepmind, применяющий описанную выше логику в современном масштабе.

1) В качестве задачи используется Xland 2.0 - это семейство из 10^40 задач. Это случайно генерируемые 3D-"площадки" со каким-то набором объектов, которые можно перемещать по площадке. Агент - это "существо" на площадке с видом от первого лица, которое может физически с объектами взаимодействовать. Объекты так же могут взаимодействовать в другими объектами согласно каким-то правилам (например, объект №1 и №4 при касании друг с другом исчезают / превращаются в объект №5). Агенту назначается награда за какое-то событие в этой среде (например, агент держит в руках объект №2).
2) В качестве модели используется полумиллиардный трансформер, который принимает на вход последние N событий из своей истории - вид от первого лица, награды и другую информацию. Как я уже говорил в прошлом посте, в постановке мета-обучения границы между эпизодами в одной задаче стёрты. Обучение занимает десятки миллиардов шагов.
3) Одним из ключей к успеху является Auto-curriculum learning. Мы регулярно сэмплируем пачку новых задач для обучения, но не учимся на всех подряд. Мы выбираем те задачи, которые для нас оптимальные по сложности - не слишком простые и не слишком сложные.

В результате у системы получается значительно обходить человека на Xland-задачах. При этом на графиках видно, что система умеет именно адаптироваться к новым задачам - производительность значительно растёт с каждой попыткой, и где-то на 10 попытке доходит до плато.

На мой взгляд, это очень интересное направление исследований. Однако, стоит заметить, что эти Xland-задачи не требуют интеллектуального поведения агентов, а ресурсов для обучения уже требуется столько, сколько в принципе сейчас способно на такое выделить человечество. Так что дальнейшее масштабирование втупую вряд ли даст нам огромное плоды. Будет очень интересно следить за дальнейшим развитием.

Видеообзор на полчаса.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/78

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Telegram announces Anonymous Admins

The cloud-based messaging platform is also adding Anonymous Group Admins feature. As per Telegram, this feature is being introduced for safer protests. As per the Telegram blog post, users can “Toggle Remain Anonymous in Admin rights to enable Batman mode. The anonymized admin will be hidden in the list of group members, and their messages in the chat will be signed with the group name, similar to channel posts.”

Knowledge Accumulator from ms


Telegram Knowledge Accumulator
FROM USA